<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most frequent causes of hospital- and community-associated infections. Resistance to the entire class of β-lactam antibiotics, such as methicillin and penicillin, makes MRSA infections difficult to treat. Hospital-associated MRSA strains are often multi-drug-resistant, leaving only lower efficiency drugs such as vancomycin as treatments options. Like many other S. aureus strains, MRSA strains produce a series of virulence factors, such as toxins and adhesion proteins. Recent findings have shed some new light on the molecular events that underlie MRSA epidemic waves. Newly emerging MRSA clones appear to have acquired phenotypic traits that render them more virulent or able to colonize better, either via mobile genetic elements or via adaptation of gene expression. Acquisition of Panton-Valentine leukocidin genes and increased expression of core genome-encoded toxins are being discussed as potentially contributing to the success of the recently emerged community-associated MRSA strains. However, the molecular factors underlying the spread of hospital- and community-associated MRSA strains are still far from being completely understood, a situation calling for enhanced research efforts in that area.
Community-Acquired Infections, Methicillin-Resistant Staphylococcus aureus, Cross Infection, Molecular Epidemiology, Gene Transfer, Horizontal, Virulence, Virulence Factors, Humans, Staphylococcal Infections
Community-Acquired Infections, Methicillin-Resistant Staphylococcus aureus, Cross Infection, Molecular Epidemiology, Gene Transfer, Horizontal, Virulence, Virulence Factors, Humans, Staphylococcal Infections
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 275 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |