Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
European Journal of Biochemistry
Article . 1984 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The regulatory properties of isocitrate dehydrogenase kinase and isocitrate dehydrogenase phosphatase from Escherichia coli ML308 and the roles of these activities in the control of isocitrate dehydrogenase

Authors: Hugh G. Nimmo; Gillian A. Nimmo;

The regulatory properties of isocitrate dehydrogenase kinase and isocitrate dehydrogenase phosphatase from Escherichia coli ML308 and the roles of these activities in the control of isocitrate dehydrogenase

Abstract

Isocitrate dehydrogenase kinase can use ATP but not other nucleoside triphosphates as a phosphate donor. It responds hyperbolically to both ATP and isocitrate dehydrogenase. The kinase is inhibited sigmoidally by low concentrations of DL‐isocitrate and hyperbolically by ADP, AMP, NADPH, phosphoenolpyruvate and several other effectors. Isocitrate dehydrogenase phosphatase requires a nucleotide for activity; ADP and ATP are the best activators. The phosphatase responds hyperbolically to ADP or ATP, to Mg2+ ions and to phosphorylated isocitrate dehydrogenase. The phosphatase is activated twofold to threefold by AMP, oxaloacetate, pyruvate, phosphoenolpyruvate, 2‐oxoglutarate and DL‐isocitrate. It is inhibited hyperbolically by NADPH. The pH optima and the Km values for substrates of the kinase and the phosphatase are reported. We propose that the role of the phosphorylation of isocitrate dehydrogenase during growth of Escherichia coli on acetate is to render this enzyme rate‐limiting in the citric acid cycle; this should cause an increase in the level of isocitrate and divert the flux of carbon through the glyoxylate bypass. We suggest that the phosphorylation state of isocitrate dehydrogenase in intact cells is controlled by the levels of isocitrate, phosphoenolpyruvate, NADPH and the adenine nucleotides. This theory can explain many recent observations on the control of the activity of isocitrate dehydrogenase.

Related Organizations
Keywords

Chemical Phenomena, Protein Serine-Threonine Kinases, Catalysis, Isocitrate Dehydrogenase, Enzyme Activation, Chemistry, Kinetics, Escherichia coli, Phosphoprotein Phosphatases, Phosphorylation, Protein Kinases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    77
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
77
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?