Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International journal of peptide & protein research
Article . 1988 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the receptor binding site of relaxins

Authors: Christian Schwabe; Erika E. Büllesbach;

On the receptor binding site of relaxins

Abstract

Relaxin plays a critical role in viviparity and has recently been implicated as a hormone of oviparity as well. In most mammals relaxin causes the widening of the birth canal during parturition and suppresses uterine motility during pregnancy. Relaxins isolated from several species have shown a great deal of sequence variability, and speculations regarding a putative receptor interaction site have, as a consequence, varied considerably. The isolation of skate relaxin in combination with our chemical modification data enable us to suggest a unique site for the interaction of relaxin with its uterine and symphyseal receptors.

Related Organizations
Keywords

Models, Molecular, Mice, Inbred ICR, Binding Sites, Chemical Phenomena, Molecular Structure, Receptors, Peptide, Cyclohexanones, Circular Dichroism, Molecular Sequence Data, Relaxin, Rats, Receptors, G-Protein-Coupled, Receptors, Neurotransmitter, Chemistry, Mice, Sharks, Animals, Humans, Female, Amino Acid Sequence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    59
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
59
Top 10%
Top 10%
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?