Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Parasite Immunologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2009
License: CC BY
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Parasite Immunology
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Filariasis and lymphoedema

Authors: Sabine Specht; Achim Hoerauf; Alexander Yaw Debrah; Alexander Yaw Debrah; Kenneth Pfarr;

Filariasis and lymphoedema

Abstract

SummaryAmong the causes of lymphoedema (LE), secondary LE due to filariasis is the most prevalent. It affects only a minority of the 120 million people infected with the causative organisms of lymphatic filariasis (LF), Wuchereria bancrofti and Brugia malayi/timori, but is clustered in families, indicating a genetic basis for development of this pathology. The majority of infected individuals develop filarial‐specific immunosuppression that starts even before birth in cases where mothers are infected and is characterized by regulatory T‐cell responses and high levels of IgG4, thus tolerating high parasite loads and microfilaraemia. In contrast, individuals with this pathology show stronger immune reactions biased towards Th1, Th2 and probably also Th17. Importantly, as for the aberrant lymph vessel development, innate immune responses that are triggered by the filarial antigen ultimately result in the activation of vascular endothelial growth factors (VEGF), thus promoting lymph vessel hyperplasia as a first step to lymphoedema development. Wolbachia endosymbionts are major inducers of these responses in vitro, and their depletion by doxycycline in LF patients reduces plasma VEGF and soluble VEGF‐receptor‐3 levels to those seen in endemic normals preceding pathology improvement. The search for the immunogenetic basis for LE could lead to the identification of risk factors and thus, to prevention; and has so far led to the identification of single‐nucleotide polymorphisms (SNP) with potential functional relevance to VEGF, cytokine and toll‐like receptor (TLR) genes. Hydrocele, a pathology with some similarity to LE in which both lymph vessel dilation and lymph extravasation are shared sequelae, has been found to be strongly associated with a VEGF‐A SNP known for upregulation of this (lymph‐)angiogenesis factor.

Keywords

Vascular Endothelial Growth Factor A, Elephantiasis, Filarial, Immune Tolerance, Animals, Humans, Lymphedema, Review Articles, Immunity, Innate, Wolbachia, Lymphatic Vessels

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    135
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
135
Top 1%
Top 10%
Top 10%
Green
bronze