
We give an algorithm for the economical calculation of angles and actions for stars in axisymmetric potentials. We test the algorithm by integrating orbits in a realistic model of the Galactic potential, and find that, even for orbits characteristic of thick-disc stars, the errors in the actions are typically smaller than 2 percent. We describe a scheme for obtaining actions by interpolation on tabulated values that significantly accelerates the process of calculating observables quantities, such as density and velocity moments, from a distribution function.
5 pages accepted for publication in MNRAS
Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies
Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 220 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
