Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Monthly Notices of t...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Monthly Notices of the Royal Astronomical Society
Article . 2012 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2012
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The M dwarf problem in the Galaxy

Authors: Vincent M. Woolf; Andrew A. West;

The M dwarf problem in the Galaxy

Abstract

We present evidence that there is an M dwarf problem similar to the previously identified G dwarf and K dwarf problems: the number of low-metallicity M dwarfs is not sufficient to match simple closed-box models of local Galactic chemical evolution. We estimated the metallicity of 4141 M dwarf stars with spectra from the Sloan Digital Sky Survey (SDSS) using a molecular band strength versus metallicity calibration developed using high resolution spectra of nearby M dwarfs. Using a sample of M dwarfs with measured magnitudes, parallaxes, and metallicities, we derived a relation that describes the absolute magnitude variation as a function of metallicity. When we examined the metallicity distribution of SDSS stars, after correcting for the different volumes sampled by the magnitude-limited survey, we found that there is an M dwarf problem, with the number of M dwarfs at [Fe/H] ~ -0.5 less than 1% the number at [Fe/H] = 0, where a simple model of Galactic chemical evolution predicts a more gradual drop in star numbers with decreasing metallicity.

To be published in Monthly Notices of the RAS by the Royal Astronomical Society and Blackwell Publishing. 7 pages, 3 figures

Related Organizations
Keywords

Astrophysics - Solar and Stellar Astrophysics, FOS: Physical sciences, Solar and Stellar Astrophysics (astro-ph.SR)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Average
Top 10%
Green
gold