
We numerically investigate the dynamics of orbits in 3D circumbinary phase-space as a function of binary eccentricity and mass fraction. We find that inclined circumbinary orbits in the elliptically-restricted three-body problem display a nodal libration mechanism in the longitude of the ascending node and in the inclination to the plane of the binary. We (i) analyse and quantify the behaviour of these orbits with reference to analytical work performed by Farago & Laskar (2010) and (ii) investigate the stability of these orbits over time. This work is the first dynamically aware analysis of the stability of circumbinary orbits across both binary mass fraction and binary eccentricity. This work also has implications for exoplanetary astronomy in the existence and determination of stable orbits around binary systems.
Monthly Notices of the Royal Astronomical Society. in press
Astrophysics - Solar and Stellar Astrophysics, FOS: Physical sciences, Solar and Stellar Astrophysics (astro-ph.SR)
Astrophysics - Solar and Stellar Astrophysics, FOS: Physical sciences, Solar and Stellar Astrophysics (astro-ph.SR)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 138 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
