Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Monthly Notices of t...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Monthly Notices of the Royal Astronomical Society
Article . 2010 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2010
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The masses of the Milky Way and Andromeda galaxies

Authors: Laura L. Watkins; N. Wyn Evans; J. An; J. An;

The masses of the Milky Way and Andromeda galaxies

Abstract

We present a family of robust tracer mass estimators to compute the enclosed mass of galaxy haloes from samples of discrete positional and kinematical data of tracers, such as halo stars, globular clusters and dwarf satellites. The data may be projected positions, distances, line of sight velocities or proper motions. Forms of the estimator tailored for the Milky Way galaxy and for M31 are given. Monte Carlo simulations are used to quantify the uncertainty as a function of sample size. For the Milky Way, the satellite sample consists of 26 galaxies with line-of-sight velocities. We find that the mass of the Milky Way within 300 kpc is ~ 0.9 x 10^12 solar masses assuming velocity isotropy. However, the mass estimate is sensitive to the anisotropy and could plausibly lie between 0.7 - 3.4 x 10^12 solar masses. Incorporating the proper motions of 6 Milky Way satellites into the dataset, we find ~ 1.4 x 10^12 solar masses. The range here if plausible anisotropies are used is still broader, from 1.2 - 2.7 x 10^12 solar masses. For M31, there are 23 satellite galaxies with measured line-of-sight velocities, but only M33 and IC 10 have proper motions. We use the line of sight velocities and distances of the satellite galaxies to estimate the mass of M31 within 300 kpc as ~ 1.4 x 10^12 solar masses assuming isotropy. There is only a modest dependence on anisotropy, with the mass varying between 1.3 -1.6 x 10^12 solar masses. Given the uncertainties, we conclude that the satellite data by themselves yield no reliable insights into which of the two galaxies is actually the more massive.

15 pages, submitted to MNRAS

Keywords

Cosmology and Nongalactic Astrophysics (astro-ph.CO), Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies, Astrophysics - Cosmology and Nongalactic Astrophysics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    316
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
316
Top 1%
Top 1%
Top 1%
Green
bronze