
The dense molecular cloud cores that form stars, like other self-gravitating objects, undergo bulk oscillations. Just at the point of gravitational instability, their fundamental oscillation mode has zero frequency. We study, using perturbation theory, the evolution of a spherical cloud that possesses such a frozen mode. We find that the cloud undergoes a prolonged epoch of subsonic, accelerating contraction. This slow contraction occurs whether the cloud is initially inflated or compressed by the oscillation. The subsonic motion described here could underlie the spectral infall signature observed in many starless dense cores.
Astrophysics - Solar and Stellar Astrophysics, FOS: Physical sciences, Solar and Stellar Astrophysics (astro-ph.SR)
Astrophysics - Solar and Stellar Astrophysics, FOS: Physical sciences, Solar and Stellar Astrophysics (astro-ph.SR)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
