
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>The luminosity functions of galaxies and quasars provide invaluable information about galaxy and quasar formation. Estimating the luminosity function from magnitude limited samples is relatively straightforward, provided that the distances to the objects in the sample are known accurately; techniques for doing this have been available for about thirty years. However, distances are usually known accurately for only a small subset of the sample. This is true of the objects in the Sloan Digital Sky Survey, and will be increasingly true of the next generation of deep multi-color photometric surveys. Estimating the luminosity function when distances are only known approximately (e.g., photometric redshifts are available, but spectroscopic redshifts are not) is more difficult. I describe two algorithms which can handle this complication: one is a generalization of the V_max algorithm, and the other is a maximum likelihood approach. Because these methods account for uncertainties in the distance estimate, they impact a broader range of studies. For example, they are useful for studying the abundances of galaxies which are sufficiently nearby that the contribution of peculiar velocity to the spectroscopic redshift is not negligible, so only a noisy estimate of the true distance is available. In this respect, peculiar velocities and photometric redshift errors have similar effects. The methods developed here are also useful for estimating the stellar luminosity function in samples where accurate parallax distances are not available.
9 pages, 6 figures, submitted to MNRAS
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 21 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
