Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Monthly Notices of t...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Monthly Notices of the Royal Astronomical Society
Article . 2006 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2005
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Properties of intra-group stars and galaxies in galaxy groups: ‘normal’ versus ‘fossil’ groups

Properties of intra-group stars and galaxies
Authors: Sommer-Larsen, Jesper;

Properties of intra-group stars and galaxies in galaxy groups: ‘normal’ versus ‘fossil’ groups

Abstract

Cosmological LCDM simulations of 12 M_vir~10^14 Msun galaxy groups have been performed, invoking star formation, chemical evolution with non-instantaneous recycling, metallicity dependent radiative cooling, strong star-burst driven galactic super-winds and effects of a meta-galactic UV field. At z=0, intra-group light (IGL) fractions are found to be 12-45%. Low values refer to groups with only a small difference between the R-band magnitudes of the first and second ranked group galaxy, large are typical of "fossil" groups (FGs). The IG stars in the 4 FGs are 0.3-0.5 Gyr older than in the 8 nonFGs. For the IGL, B-R=~1.4, in good agreement with observations. For FGs/nonFGs the iron abundance of the IG stars is slightly sub-solar in the central parts (r~100 kpc) decreasing to about 40% solar at about 0.5 r_vir The IG stars are alpha-element enhanced with [O/Fe] increasing with r, and an overall [O/Fe]~0.45, indicating predominant SNII enrichment. The velocity distributions of the IG stars and group galaxies are, at r>~30 kpc, significantly more radially anisotropic for FGs than for nonFGs. So a characteristic of FG formation, apart from formation time (D'Onghia et al.), may be the "initial" velocity distribution of the group galaxies. For FGs one can dynamically infer the (dark matter dominated) mass distribution of the groups all the way to r_vir, from the kinematics of the IG stars or group galaxies. For the nonFGs this method overestimates the group mass at r>~200 kpc, by up to a factor of two at r_vir. This is interpreted as FGs being, in general, more relaxed than nonFGs. Finally, FGs of the above M_vir should host ~500 planetary nebulae at projected distances between 100 and 1000 kpc from the first ranked galaxy. All results appear consistent with the FG formation scenario of D'Onghia et al.

12 pages, 15 figures, Accepted for MNRAS, Printing in colour recommended

Country
Denmark
Keywords

Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 10%
Top 10%
Top 10%
Green
bronze