Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Monthly Notices of t...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Monthly Notices of the Royal Astronomical Society
Article . 2004 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2004
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Synthetic stellar populations: single stellar populations, stellar interior models and primordial protogalaxies

Authors: Raul Jimenez; John A. Peacock; James Dunlop; Paolo Padoan; James M. MacDonald;

Synthetic stellar populations: single stellar populations, stellar interior models and primordial protogalaxies

Abstract

We present a new set of stellar interior and synthesis models for predicting the integrated emission from stellar populations in star clusters and galaxies of arbitrary age and metallicity. This work differs from existing spectral synthesis codes in a number of important ways, namely (1) the incorporation of new stellar evolutionary tracks, with sufficient resolution in mass to sample rapid stages of stellar evolution; (2) a physically consistent treatment of evolution in the HR diagram, including the approach to the main sequence and the effects of mass loss on the giant and horizontal-branch phases. Unlike several existing models, ours yield consistent ages when used to date a coeval stellar population from a wide range of spectral features and colour indexes. We rigorously discuss degeneracies in the age-metallicity plane and show that inclusion of spectral features blueward of 4500 AA, suffices to break any remaining degeneracy and that with moderate S/N spectra (10 per 20AA, resolution element) age and metallicity are not degenerate. We also study sources of systematic errors in deriving the age of a single stellar population and conclude that they are not larger than 10-15%. We illustrate the use of single stellar populations by predicting the colors of primordial proto-galaxies and show that one can first find them and then deduce the form of the IMF for the early generation of stars in the universe. Finally, we provide accurate analytic fitting formulas for ultra fast computation of colors of single stellar populations. The models can be found at http://www.physics.upenn.edu/~raulj

MNRAS in press

Keywords

Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    77
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
77
Top 10%
Top 10%
Top 10%
Green
bronze