
We measure the redshift-dependent luminosity function and the comoving radial density of galaxies in the Sloan Digital Sky Survey Data Release 1 (SDSS DR1). Both measurements indicate that the apparent number density of bright galaxies increases by a factor ~3 as redshift increases from z=0 to z=0.3. This result is robust to the assumed cosmology, to the details of the K-correction and to direction on the sky. These observations are most naturally explained by significant evolution in the luminosity and/or number density of galaxies at redshifts z < 0.3. Such evolution is also consistent with the steep number-magnitude counts seen in the APM Galaxy Survey, without the need to invoke a local underdensity in the galaxy distribution distribution or magnitude scale errors.
7 pages, 6 figures. MNRAS in press. Minor changes correspond to accepted version of paper
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics, QC
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics, QC
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 19 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
