Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Oral Reha...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Oral Rehabilitation
Article . 1996 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Materials for endosseous dental implants

Authors: John C. Wataha;

Materials for endosseous dental implants

Abstract

summary The goal of placement of endosseous dental implants is to achieve osseointegration or biointegration of the bone with the implant. A wide variety of materials has been used for these implants, but only a few promote osseointegration and biointegration. Titanium and titanium alloy (TJ6A14V) have been the most widely used of these materials. The surface oxide of titanium appears to be central to the ability of this material to osseointegrate. The oxide limits dissolution of elements and promotes the deposition of biological molecules which allow bone to exist as close as 30 å to the surface of the implant. The details of the ultrastructure of the gap between the implant and bone remain undefined, and the consequences of elements which are released on the interface over time are not known. These areas of investigation are particularly important in defining the differences between commercially pure titanium implants and those made of titanium, aluminium and vanadium. The epithelial interface between the gingiva and titanium appears to contain many of the structural characteristics of the native tooth‐gingiva interface, but details are still vague. The connective tissue interface with the titanium appears to be one of tightly fitting tissues rather than adhesion. Ceramic coatings appear to improve the ingrowth of bone and promote chemical integration of the implant with the bone. The characteristics of these coatings are complex and affect the bony response, but the mechanisms remain obscure. The degradation of the coatings is an issue of particular controversy. Progress in dental implantology is likely to continue as the interface between the material and bone is more clearly understood, and biological molecules and artificial tissues are developed.

Related Organizations
Keywords

Dental Implants, Titanium, Ceramics, Surface Properties, Dental Implantation, Endosseous, Gingiva, Bone and Bones, Epithelium, Dental Materials, Biodegradation, Environmental, Solubility, Connective Tissue, Osseointegration, Alloys, Humans, Dental Alloys

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    76
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
76
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!