<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1111/itor.12368
AbstractThe amount of big data collected during human–computer interactions requires natural language processing (NLP) applications to be executed efficiently, especially in parallel computing environments. Scalability and performance are critical in many NLP applications such as search engines or web indexers. However, there is a lack of mathematical models helping users to design and apply scheduling theory for NLP approaches. Moreover, many researchers and software architects reported various difficulties related to common NLP benchmarks. Therefore, this paper aims to introduce and demonstrate how to apply a scheduling model for a class of keyword extraction approaches. Additionally, we propose methods for the overall performance evaluation of different algorithms, which are based on processing time and correctness (quality) of answers. Finally, we present a set of experiments performed in different computing environments together with obtained results that can be used as reference benchmarks for further research in the field.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |