
doi: 10.1111/gwat.12861
pmid: 30653671
Abstract Axisymmetric groundwater models are used for simulating radially symmetric conditions. Groundwater simulators built specifically to model axisymmetric conditions are most commonly used for simulating aquifer tests. Although some numerical models capable of simulating flow and solute transport that are developed in the cartesian coordinate system framework offer flexibility to simulate axisymmetric conditions, most of the numerical groundwater models, such as the MODFLOW family of codes, are based on structured grids in which axisymmetric flows cannot be directly simulated. Researchers in the past have provided methods to manipulate aquifer properties to mimic axisymmetric conditions. This study presents a methodology that takes advantage of the unstructured grids of MODFLOW‐USG to simulate axisymmetric models within the MODFLOW framework. To develop axisymmetric models, the intercell interface area arrays of MODFLOW‐USG were calculated to accurately represent coaxial cylindrical model cells. Three examples are presented to demonstrate the application of MODFLOW‐USG for axisymmetric modeling: a pumping well with delayed yield effects, a vadose zone flow model simulating an infiltration basin, and a density‐dependent saltwater intrusion problem for a circular island. Results were verified against analytical solutions and published numerical codes.
Water Movements, Models, Theoretical, Groundwater
Water Movements, Models, Theoretical, Groundwater
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
