Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ground Waterarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Ground Water
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Ground Water
Article . 2019
versions View all 2 versions
addClaim

Axisymmetric Modeling Using MODFLOW‐USG

Authors: Vivek, Bedekar; Leland, Scantlebury; Sorab, Panday;

Axisymmetric Modeling Using MODFLOW‐USG

Abstract

Abstract Axisymmetric groundwater models are used for simulating radially symmetric conditions. Groundwater simulators built specifically to model axisymmetric conditions are most commonly used for simulating aquifer tests. Although some numerical models capable of simulating flow and solute transport that are developed in the cartesian coordinate system framework offer flexibility to simulate axisymmetric conditions, most of the numerical groundwater models, such as the MODFLOW family of codes, are based on structured grids in which axisymmetric flows cannot be directly simulated. Researchers in the past have provided methods to manipulate aquifer properties to mimic axisymmetric conditions. This study presents a methodology that takes advantage of the unstructured grids of MODFLOW‐USG to simulate axisymmetric models within the MODFLOW framework. To develop axisymmetric models, the intercell interface area arrays of MODFLOW‐USG were calculated to accurately represent coaxial cylindrical model cells. Three examples are presented to demonstrate the application of MODFLOW‐USG for axisymmetric modeling: a pumping well with delayed yield effects, a vadose zone flow model simulating an infiltration basin, and a density‐dependent saltwater intrusion problem for a circular island. Results were verified against analytical solutions and published numerical codes.

Related Organizations
Keywords

Water Movements, Models, Theoretical, Groundwater

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!