
AbstractClimate change is expected to increase the frequency and severity of droughts. These events, which can cause significant perturbations of terrestrial ecosystems and potentially long‐term impacts on ecosystem structure and functioning after the drought has subsided are often called ‘drought legacies’. While the immediate effects of drought on ecosystems have been comparatively well characterized, our broader understanding of drought legacies is just emerging. Drought legacies can relate to all aspects of ecosystem structure and functioning, involving changes at the species and the community scale as well as alterations of soil properties. This has consequences for ecosystem responses to subsequent drought. Here, we synthesize current knowledge on drought legacies and the underlying mechanisms. We highlight the relevance of legacy duration to different ecosystem processes using examples of carbon cycling and community composition. We present hypotheses characterizing how intrinsic (i.e. biotic and abiotic properties and processes) and extrinsic (i.e. drought timing, severity, and frequency) factors could alter resilience trajectories under scenarios of recurrent drought events. We propose ways for improving our understanding of drought legacies and their implications for subsequent drought events, needed to assess the longer‐term consequences of droughts on ecosystem structure and functioning.
TREE MORTALITY, GRASSLAND, PRODUCTIVITY, Climate Change, Reviews, SOIL MICROBIAL COMMUNITIES, ECOLOGICAL MEMORY, Carbon Cycle, Droughts, CARBON, Soil, PLANT FUNCTIONAL COMPOSITION, CLIMATE EXTREMES, FOREST INSECTS, EXTREME DROUGHT, Ecosystem
TREE MORTALITY, GRASSLAND, PRODUCTIVITY, Climate Change, Reviews, SOIL MICROBIAL COMMUNITIES, ECOLOGICAL MEMORY, Carbon Cycle, Droughts, CARBON, Soil, PLANT FUNCTIONAL COMPOSITION, CLIMATE EXTREMES, FOREST INSECTS, EXTREME DROUGHT, Ecosystem
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 225 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
