
doi: 10.1111/ejn.14640
pmid: 31811730
Abstract Extensive preclinical research has been conducted in recent years to reveal the cell types, neuronal circuits and molecular and morphological changes implicated in the function of the dentate gyrus in depression. This was profoundly facilitated by the emergence of methods such as gene targeting, neuronal cell activity manipulation, including optogenetics and chemogenetics, and the development of novel RNA sequencing technology and powerful MRI imagers that were used in clinical studies. These advancements provided researchers with the precise skills needed to evaluate the changes in the dentate gyrus structure and cell function in rodent models as well as in brains of depressed and medicated patients. Here, we review these latest findings and discuss the existing gaps in our knowledge of the role of the dentate gyrus in depression and in mediating the response to antidepressant therapies.
Neurons, Optogenetics, Depression, Dentate Gyrus, Brain, Humans
Neurons, Optogenetics, Depression, Dentate Gyrus, Brain, Humans
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 30 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
