Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Evolution & Developm...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Evolution & Development
Article . 2017 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

The origins of developmental gene regulation

Authors: César, Arenas-Mena;

The origins of developmental gene regulation

Abstract

SUMMARYThe leap from simple unicellularity to complex multicellularity remains one of life's major enigmas. The origins of metazoan developmental gene regulatory mechanisms are sought by analyzing gene regulation in extant eumetazoans, sponges, and unicellular organisms. The main hypothesis of this manuscript is that, developmental enhancers evolved from unicellular inducible promoters that diversified the expression of regulatory genes during metazoan evolution. Promoters and enhancers are functionally similar; both can regulate the transcription of distal promoters and both direct local transcription. Additionally, enhancers have experimentally characterized structural features that reveal their origin from inducible promoters. The distal co‐operative regulation among promoters identified in unicellular opisthokonts possibly represents the precursor of distal regulation of promoters by enhancers. During metazoan evolution, constitutive‐type promoters of regulatory genes would have acquired novel receptivity to distal regulatory inputs from promoters of inducible genes that eventually specialized as enhancers. The novel regulatory interactions would have caused constitutively expressed genes controlling differential gene expression in unicellular organisms to become themselves differentially expressed. The consequence of the novel regulatory interactions was that regulatory pathways of unicellular organisms became interlaced and ultimately evolved into the intricate developmental gene regulatory networks (GRNs) of extant metazoans.

Related Organizations
Keywords

Enhancer Elements, Genetic, Prokaryotic Cells, Animals, Eukaryota, Gene Expression Regulation, Developmental, Promoter Regions, Genetic, Biological Evolution

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!