Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Clinical and Transla...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Clinical and Translational Science
Article . 2013 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

Sildenafil Increases Muscle Protein Synthesis and Reduces Muscle Fatigue

Authors: Melinda, Sheffield-Moore; John E, Wiktorowicz; Kizhake V, Soman; Christopher P, Danesi; Michael P, Kinsky; Edgar L, Dillon; Kathleen M, Randolph; +14 Authors

Sildenafil Increases Muscle Protein Synthesis and Reduces Muscle Fatigue

Abstract

AbstractReductions in skeletal muscle function occur during the course of healthy aging as well as with bed rest or diverse diseases such as cancer, muscular dystrophy, and heart failure. However, there are no accepted pharmacologic therapies to improve impaired skeletal muscle function. Nitric oxide may influence skeletal muscle function through effects on excitation‐contraction coupling, myofibrillar function, perfusion, and metabolism. Here we show that augmentation of nitric oxide‐cyclic guanosine monophosphate signaling by short‐term daily administration of the phosphodiesterase 5 inhibitor sildenafil increases protein synthesis, alters protein expression and nitrosylation, and reduces fatigue in human skeletal muscle. These findings suggest that phosphodiesterase 5 inhibitors represent viable pharmacologic interventions to improve muscle function.

Keywords

Adult, Male, Middle Aged, Phosphodiesterase 5 Inhibitors, Nitric Oxide, Texas, Drug Administration Schedule, Piperazines, Sildenafil Citrate, Double-Blind Method, Purines, Protein Biosynthesis, Muscle Fatigue, Humans, Sulfones, Muscle, Skeletal, Cyclic GMP, Aged, Muscle Contraction, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
gold