
AbstractZonula occludens‐1 (ZO‐1) is a scaffolding protein of tight junctions, which seal adjacent epithelial cells, that is also expressed in adherens junctions. The distribution pattern of ZO‐1 differs among stratified squamous epithelia, including that between skin and oral buccal mucosa. However, the causes for this difference, and the mechanisms underlying ZO‐1 spatial regulation, have yet to be elucidated. In this study, we showed that epithelial turnover and proliferation are associated with ZO‐1 distribution in squamous epithelia. We tried to verify the regulation of ZO‐1 by comparing normal skin and psoriasis, known as inflammatory skin disease with rapid turnover. We as well compared buccal mucosa and oral lichen planus, known as an inflammatory oral disease with a longer turnover interval. The imiquimod (IMQ) mouse model, often used as a psoriasis model, can promote cell proliferation. On the contrary, we peritoneally injected mice mitomycin C, which reduces cell proliferation. We examined whether IMQ and mitomycin C cause changes in the distribution and appearance of ZO‐1. Human samples and mouse pharmacological models revealed that slower epithelial turnover/proliferation led to the confinement of ZO‐1 to the uppermost part of squamous epithelia. In contrast, ZO‐1 was widely distributed under conditions of faster cell turnover/proliferation. Cell culture experiments and mathematical modelling corroborated these ZO‐1 distribution patterns. These findings demonstrate that ZO‐1 distribution is affected by epithelial cell dynamics.
Mice, Mitomycin, Zonula Occludens-1 Protein, Carcinoma, Squamous Cell, Animals, Humans, Psoriasis, Original Articles, Zonula Occludens-2 Protein, Tight Junctions, Cell Proliferation
Mice, Mitomycin, Zonula Occludens-1 Protein, Carcinoma, Squamous Cell, Animals, Humans, Psoriasis, Original Articles, Zonula Occludens-2 Protein, Tight Junctions, Cell Proliferation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 21 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
