Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Computer Graphics Fo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computer Graphics Forum
Article . 2013 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Landmark‐Guided Elastic Shape Analysis of Spherically‐Parameterized Surfaces

Authors: Sebastian Kurtek; Anuj Srivastava; Eric Klassen; Hamid Laga;

Landmark‐Guided Elastic Shape Analysis of Spherically‐Parameterized Surfaces

Abstract

AbstractWe argue that full surface correspondence (registration) and optimal deformations (geodesics) are two related problems and propose a framework that solves them simultaneously. We build on the Riemannian shape analysis of anatomical and star‐shaped surfaces of Kurtek et al. and focus on articulated complex shapes that undergo elastic deformations and that may contain missing parts. Our core contribution is the re‐formulation of Kurtek et al.'s approach as a constrained optimization over all possible re‐parameterizations of the surfaces, using a sparse set of corresponding landmarks. We introduce a landmark‐constrained basis, which we use to numerically solve this optimization and therefore establish full surface registration and geodesic deformation between two surfaces. The length of the geodesic provides a measure of dissimilarity between surfaces. The advantages of this approach are: (1) simultaneous computation of full correspondence and geodesic between two surfaces, given a sparse set of matching landmarks (2) ability to handle more comprehensive deformations than nearly isometric, and (3) the geodesics and the geodesic lengths can be further used for symmetrizing 3D shapes and for computing their statistical averages. We validate the framework on challenging cases of large isometric and elastic deformations, and on surfaces with missing parts. We also provide multiple examples of averaging and symmetrizing 3D models.

Country
Australia
Keywords

optimal deformation, statistical average, 516, elastic shape analysis, surface correspondence, complex shapes, shape analysis, star-shaped

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!