
The kinesin superfamily (KIF) is a group of proteins that share a highly conserved motor domain. Except for some members, many KIF proteins have adenosine triphosphatase activity and microtubule‐dependent plus‐end motion ability. Kinesins participate in several essential cellular functions, including mitosis, meiosis and the transport of macromolecules. Increasing evidence indicates kinesin proteins play critical roles in the genesis and development of human cancers. Some kinesin proteins are associated with maligancy as well as drug resistance of solid tumor. Thus, targeting KIF therapy seems to be a promising anticancer strategy. Inhibitors of KIF such as kinesin spindle protein (KSP/Eg5) have entered clinical trials for monotherapy or in combination with other drugs, and kinesins other than Eg5 with various potential anticancer target characteristics are also constantly being discovered and studied. Here, we summarize the oncogenic roles of kinesin proteins and potential cancer therapy strategies that target KIF.
Cell Transformation, Neoplastic, Animals, Humans, Kinesins
Cell Transformation, Neoplastic, Animals, Humans, Kinesins
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 127 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
