Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biological Reviewsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biological Reviews
Article . 2014 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

Locomotion in caterpillars

Authors: L I, van Griethuijsen; B A, Trimmer;

Locomotion in caterpillars

Abstract

ABSTRACTMost species of caterpillar move around by inching or crawling. Their ability to navigate in branching three‐dimensional structures makes them particularly interesting biomechanical subjects. The mechanism of inching has not been investigated in detail, but crawling is now well understood from studies on caterpillar neural activity, dynamics and structural mechanics. Early papers describe caterpillar crawling as legged peristalsis, but recent work suggests that caterpillars use a tension‐based mechanism that helps them to exploit arboreal niches. Caterpillars are not obligate hydrostats but instead use their strong grip to the substrate to transmit forces, in effect using their environment as a skeleton. In addition, the gut which accounts for a substantial part of the caterpillar's weight, moves independently of the body wall during locomotion and may contribute to crawling dynamics. Work‐loop analysis of caterpillar muscles shows that they are likely to act both as actuators and energy dissipaters during crawling. Because caterpillar tissues are pseudo‐elastic, and locomotion involves large body deformations, moving is energetically inefficient. Possession of a soft body benefits caterpillars by allowing them to grow quickly and to access remote food sources safely.

Related Organizations
Keywords

Lepidoptera, Larva, Animals, Locomotion

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    97
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
97
Top 1%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!