Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biology of the Cellarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biology of the Cell
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

Motile ciliogenesis and the mitotic prism

Authors: Adel Al Jord; Nathalie Spassky; Alice Meunier;

Motile ciliogenesis and the mitotic prism

Abstract

AbstractMotile cilia of epithelial multiciliated cells transport vital fluids along organ lumens to promote essential respiratory, reproductive and brain functions. Progenitors of multiciliated cells undergo massive and coordinated organelle remodelling during their differentiation for subsequent motile ciliogenesis. Defects in multiciliated cell differentiation lead to severe cilia‐related diseases by perturbing cilia‐based flows. Recent work designated the machinery of mitosis as the orchestrator of the orderly progression of differentiation associated with multiple motile cilia formation. By examining the events leading to motile ciliogenesis with a methodological prism of mitosis, we contextualise and discuss the recent findings to broaden the spectrum of questions related to the differentiation of mammalian multiciliated cells.

Keywords

Organelles, Mitosis, Epithelial Cells, Cell Line, Mice, Cell Transformation, Neoplastic, Yeasts, CDC2 Protein Kinase, Animals, Humans, Cilia, Centrioles

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!