Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Annals of Applied Bi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Annals of Applied Biology
Article
License: CC BY NC SA
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CONICET Digital
Article . 2015
License: CC BY NC SA
Data sources: CONICET Digital
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Annals of Applied Biology
Article . 2015 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 5 versions
addClaim

Transcriptome analysis of seed development in apomictic Paspalum notatum

Authors: Felitti, Silvina Andrea; Acuña, Carlos Alberto; Ortiz, Juan Pablo Amelio; Quarin, Camilo Luis;

Transcriptome analysis of seed development in apomictic Paspalum notatum

Abstract

AbstractThe seed developmental process involves various tissues with several ploidy levels and different genetic origins. Therefore, its characterisation at the transcriptome level is certainly a challenge. The hypothesis of endosperm balance number (EBN) postulates that each species has an effective number that is important for normal endosperm and seed development to occur. Understanding endosperm formation in apomictic plants is crucial for the perspective of transferring apomixis to sexual species of agronomic interest. Since sexual tetraploid Paspalum plants fit the EBN premise, the EBN insensitivity observed in apomictic plants might be a requirement for the spread of pseudogamous apomixis. Crosses using several cytotypes of Paspalum notatum were made in order to induce the development of seeds with different maternal/paternal genomic ratios in the endosperm. A transcriptome characterisation of ovaries 3 h after pollination was performed using cDNA‐AFLP methodology. Forty‐six of the 100 differentially expressed transcript‐derived fragments (DETDFs) were specifically found in crosses in which apomictic plants were used as the female parent and presented a predicted m : p ratio in the endosperm that was different to the 2:1 requirement of the EBN. Moreover, 12 of the DETDFs presented identity with proteins that were differentially expressed in response to changes in the levels of extracellular ATP (eATP) in Arabidopsis cell suspension cultures. eATP is an important molecular switch in plants that tightly controls organellar energy metabolism and activates gene expression controlling specific growth and developmental programmes. The results suggest that eATP‐mediated signalling could be involved in the regulation of endosperm development.

Country
Argentina
Keywords

Pseudogamy, Endosperm balance number, Endosperm, Endosperm Balance Number, Paspalum Notatum, Extracellular ATP, Extracellular Atp, https://purl.org/becyt/ford/1.6, Paspalum notatum, Transcriptome, Transcriptomics, https://purl.org/becyt/ford/1

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Average
Green
hybrid