Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Microb...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Microbiology Reports
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY
Data sources: PubMed Central
versions View all 2 versions
addClaim

Nitrogen Substrate Impacts Microcystis aeruginosa Exometabolome Composition

Authors: Caroline M. Peck; Lauren N. Hart; Roland Kersten; Jenan J. Kharbush;

Nitrogen Substrate Impacts Microcystis aeruginosa Exometabolome Composition

Abstract

ABSTRACT Microcystis aeruginosa is a toxic cyanobacteria species that is often abundant during cyanobacterial harmful algal blooms (cyanoHABs) in freshwaters. This study examined how growth on different nitrogen substrates influences the exometabolome of toxic and non‐toxic strains of M. aeruginosa . We used untargeted metabolomics, with liquid chromatography‐mass spectrometry of metabolites followed by feature‐based molecular networking and in silico metabolite annotation. Molecules released by M. aeruginosa varied based on the type of N substrate provided: the exometabolomes of cultures grown on ammonium and urea were more similar to each other and distinct from those grown on nitrate, suggesting that different assimilatory energetic requirements between reduced and oxidised N substrates are an important driver of exometabolome composition. Amino acids and peptides were the dominant compound class among metabolites that were significantly different between N treatments, but responses to N substrate were also reflected in altered extracellular concentrations of lipids, cyanotoxins, and photoprotectants. These differences in the molecular‐level response to the type of N substrate supplied support that environmental factors like changing N availability and oxidative stress may synergistically influence M. aeruginosa strain fitness and community succession, as well as interactions between M. aeruginosa strains and other bacteria or cyanobacteria in the bloom community.

Keywords

Research Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid