Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Microbial Biotechnol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Microbial Biotechnology
Article . 2024 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY NC
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Microbial Biotechnology
Article . 2024
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Coat protein of a whitefly‐vectored plant virus as a delivery system to target whitefly

Authors: Jaime Jiménez; Mariah Kemmerer; Glenn F. King; Jane E. Polston; Bryony C. Bonning;

Coat protein of a whitefly‐vectored plant virus as a delivery system to target whitefly

Abstract

AbstractThe sweet potato whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is responsible for significant crop losses and presents one of the greatest challenges for global agricultural pest management. Management of whitefly populations and associated plant viral diseases is hindered by widespread whitefly resistance to chemical insecticides. An alternative control approach involves the use of insect‐specific neurotoxins, but these require delivery from the whitefly gut into the haemocoel. Here we demonstrate that the coat protein (CP) of a begomovirus, Tomato yellow leaf curl virus, is sufficient for delivery of fused proteins into the whitefly haemocoel without virion assembly. Following feeding on the recombinant CP‐P‐mCherry fusion (where ‐P‐ is a proline‐rich linker), mCherry fluorescence was detected in the dorsal aorta and pericardial cells of the whitefly, but not in those of whitefly fed on negative control treatments, indicating effective CP‐mediated delivery of mCherry into the whitefly haemocoel. Significant mortality was observed in whiteflies fed on a fusion of CP‐P to the insect‐specific neurotoxin Hv1a, but not in whiteflies fed on CP‐P fused to a disarmed Hv1a mutant. Begomovirus coat protein – insect neurotoxin fusions hold considerable potential for transgenic resistance to whitefly providing valuable tools for whitefly management.

Keywords

Hemiptera, Neurotoxins, Animals, Agriculture, TP248.13-248.65, Research Articles, Fluorescence, Biotechnology, Plant Viruses

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
gold