Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Forensic ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Forensic Sciences
Article . 2022 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis of the genealogy process in forensic genetic genealogy

Authors: Mine Su Ertürk; Colleen Fitzpatrick; Margaret Press; Lawrence M. Wein;

Analysis of the genealogy process in forensic genetic genealogy

Abstract

AbstractThe genealogy process is typically the most time‐consuming part of—and a limiting factor in the success of—forensic genetic genealogy, which is a new approach to solving violent crimes and identifying human remains. We formulate a stochastic dynamic program that—given the list of matches and their genetic distances to the unknown target—chooses the best decision at each point in time: which match to investigate (i.e., find its ancestors and look for most recent common ancestors between the match and the target), which set of potential most recent common ancestors to descend from (i.e., find its descendants, with the goal of identifying a marriage between the maternal and paternal sides of the target's family tree), or whether to terminate the investigation. The objective is to maximize the probability of finding the target minus a cost associated with the expected size of the final family tree. We estimate the parameters of our model using data from 17 cases (eight solved, nine unsolved) from the DNA Doe Project. We assess the Proposed Strategy using simulated versions of the 17 DNA Doe Project cases, and compare it to a Benchmark Strategy that ranks matches by their genetic distance to the target and only descends from known common ancestors between a pair of matches. The Proposed Strategy solves cases ≈10 − fold faster than the Benchmark Strategy, and does so by aggressively descending from a set of potential most recent common ancestors between the target and a match even when this set has a low probability of containing the correct most recent common ancestor. Our analysis provides a mathematical foundation for improving the genealogy process in forensic genetic genealogy.

Related Organizations
Keywords

Forensic Genetics, Models, Genetic, Humans, DNA, Original Papers, Pedigree, Probability

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Green
hybrid