<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
In this paper we consider a network of distributed sensors which simultaneously measure a physical parameter of interest, subject to a certain probability of sensing error. The sensed information at each of such nodes is channel-encoded and forwarded to a central receiver through parallel independent AWGN channels. In this scenario, several recent contributions have shown that the end-to-end Bit Error Rate (BER) performance can be dramatically improved if the decoders associated to each received signal and the data fusion stage exchange soft information in an iterative Turbo-like fashion. In order to achieve optimum performance, the probability of sensing error must be known (or estimated) at the receiver. In this work we describe a novel method for estimating such sensing error probability by properly weighting likelihoods output from the Soft-Input Soft-Output decoders (SISO), which is shown to outperform other estimation methods based in hard-decision comparisons, specially in the low SNR regime.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |