Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/vts486...
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Special Session: The Recent Advance in Hardware Implementation of Post-Quantum Cryptography

Authors: Jiafeng Xie; Kanad Basu; Kris Gaj; Ujjwal Guin;

Special Session: The Recent Advance in Hardware Implementation of Post-Quantum Cryptography

Abstract

The recent advancement in quantum technology has initiated a new round of cryptosystem innovation, i.e., the emergence of Post-Quantum Cryptography (PQC). This new class of cryptographic schemes is intended to be mathematically resistant against any known attacks using quantum computers, but, at the same time, be fully implementable using traditional semiconductor technology. The National Institutes of Standards and Technology (NIST) has already started the PQC standardization process, and the initial pool of 69 submissions has been reduced to 26 Round 2 candidates. Echoing the pace of the PQC "revolution," this paper gives a detailed and thorough introduction to recent advances in the hardware implementation of PQC schemes, including challenges, new implementation methods, and novel hardware architectures. Specifically, we have: (i) described the challenges and rewards of implementing PQC in hardware; (ii) presented the novel methodology for the design-space exploration of PQC implementations using high-level synthesis (HLS); (iii) introduced a new underexplored PQC scheme (binary Ring-Learning-with-Errors), as well as its novel hardware implementation for possible lightweight applications. The overall content delivered by this paper could serve multiple purposes: (i) provide useful references for the potential learners and the interested public; (ii) introduce new areas and directions for potential research to the VTS community; (iii) facilitate the PQC standardization process and the exploration of related new ways of implementing cryptography in existing and emerging applications.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!