Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Performance Evaluation of a Blind Single Antenna Interference Cancellation Algorithm for OFDM Systems with Insufficient Training Sequence

Authors: Zhenyu Zhou 0001; Muhammad Tariq; Yi Jiang; Nam Hoai Nguyen; Takuro Sato;

Performance Evaluation of a Blind Single Antenna Interference Cancellation Algorithm for OFDM Systems with Insufficient Training Sequence

Abstract

In the previous work, a single antenna interference cancellation (SAIC) algorithm named least mean square-blind joint maximum likelihood sequence estimation (LMS-BJMLSE) has been proposed. However, LMS-BJMLSE requires a long training sequence (TS) for channel estimation, which reduces the transmission efficiency. In another work, in order to solve this problem, a subcarrier identification and interpolation algorithm was proposed, in which the slowly converging subcarriers are identified by exploiting the correlation between the mean-square error (MSE) produced by LMS and the mean-square deviation (MSD) of the desired channel estimate. However, this correlation relationship was only found based on simulation results and no clear mathematical proof was given. The performance of the algorithm was only evaluated for the case of single interference. In this paper, the mathematical proof of the correlation relationship between MSE and MSD is given. Furthermore, we generalize LMS-BJMLSE from single antenna to receiver diversity, which is shown to provide a huge improvement over single antenna. The performance of LMS-BJMLSE is also evaluated for the case of dual interference.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!