Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://hal.archives...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hal
Conference object . 2005
Data sources: Hal
https://doi.org/10.1109/ultsym...
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Shell rupture threshold, fragmentation threshold, blake threshold

Authors: Postema, Michiel; de Jong, Nico; Schmitz, Georg;

Shell rupture threshold, fragmentation threshold, blake threshold

Abstract

The disruption of contrast agent microbubbles has been implicated in novel techniques for high-MI imaging and local drug delivery. At MI>0.6, microbubble fragmentation has been observed with thin-shelled agent (≈10 nm), and shell rupture with thick-shelled agent (≈250 nm). To predict the disruption of these nanoshelled microbubbles, destruction thresholds have been under investigation. In several studies, the Blake threshold pressure was associated with microbubble destruction. The Blake threshold pressure is the peak rarefactional acoustic pressure at which the critical Blake radius is reached, approximately twice the equilibrium radius, above which a bubble behaves like an inertial cavity. We studied the acoustic pressures at which a thin-shelled microbubble fragments and those at which a thick-shelled microbubble cracks. More specifically, we investigated the validity of the Blake threshold for these phenomena. The oscillating and fragmenting behavior of microbubbles with a 10 nm shell was simulated at a driving frequency of 0.5-2 MHz, using a modified Rayleigh-Plesset equation and assuming that fragmentation occurs when the kinetic energy of the microbubble surpasses the instantaneous bubble surface energy. For microbubbles with radii between 1 and 6 µm, the fragmentation thresholds lie between 20 and 200 kPa. Generally, the critical radius is much smaller than twice the equilibrium radius. The moment of break-up during the collapse phase is in agreement with highspeed optical observations that were presented previously. Furthermore, the shell rupture behavior of microbubbles with a thick shell was analyzed for quasistatic pressure changes (relatively low ultrasonic frequencies), assuming that the shell obeys Hooke's Law. The rupture threshold pressure of −80 kPa had been determined from acoustical data. For shells with the typical Young's modulus 2 MPa and Poisson ratio 0.5, this is in agreement with the observation that the maximal excursion upon rupture of such bubbles is smaller that 0.3 µm. In conclusion, we may state that the Blake threshold is neither a good estimator for the fragmentation, nor for the rupture of contrast agent microbubbles.

Related Organizations
Keywords

[SDV.IB.IMA] Life Sciences [q-bio]/Bioengineering/Imaging, [PHYS.MECA.MEFL] Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph], [PHYS.MECA.ACOU] Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph]

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
Green