Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Lirias
Article . 2023
Data sources: Lirias
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Wireless Communications
Article . 2023 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Z3RO Family of Precoders Cancelling Nonlinear Power Amplification Distortion in Large Array Systems

Authors: Rottenberg, François; Callebaut, Gilles; Van der Perre, Liesbet;

The Z3RO Family of Precoders Cancelling Nonlinear Power Amplification Distortion in Large Array Systems

Abstract

Large array systems use a massive number of antenna elements and clever precoder designs to achieve an array gain at the user location. These precoders require linear front-ends, and more specifically linear power amplifiers (PAs), to avoid distortion. This reduces the energy efficiency since PAs are most efficient close to saturation, where they generate most nonlinear distortion. Moreover, the use of conventional precoders can induce a coherent combining of distortion at the user locations, degrading the signal quality. In this work, novel linear precoders, simple to compute and to implement, are proposed that allow working close to saturation, while cancelling the third-order nonlinearity of the PA without prior knowledge of the signal statistics and PA model. Their design consists in saturating a single or a few antennas on purpose together with an negative gain with respect to all other antennas to compensate for the overall nonlinear distortion at the user location. The performance gains of the designs are significant for PAs working close to saturation, as compared to maximum ratio transmission (MRT) precoding and perfect per-antenna digital pre-distortion (DPD) compensation.

arXiv admin note: text overlap with arXiv:2110.07891

Related Organizations
Keywords

Signal Processing (eess.SP), Technology, EFFICIENCY, 0805 Distributed Computing, 4606 Distributed computing and systems software, Nonlinear distortion, precoder, Engineering, 1005 Communications Technologies, FOS: Electrical engineering, electronic engineering, information engineering, Large array systems, Electrical Engineering and Systems Science - Signal Processing, ANTENNA-ARRAYS, Science & Technology, Signal to noise ratio, Power amplifiers, Complexity theory, 4008 Electrical engineering, Precoding, Engineering, Electrical & Electronic, 0906 Electrical and Electronic Engineering, 4006 Communications engineering, nonlinear power amplifier, Telecommunications, Antennas, LINEARITY, Massive MIMO, Networking & Telecommunications

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Green