Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Visualization and Computer Graphics
Article . 2006 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Expressive Facial Animation Synthesis by Learning Speech Coarticulation and Expression Spaces

Authors: Zhigang, Deng; Ulrich, Neumann; J P, Lewis; Tae-Yong, Kim; Murtaza, Bulut; Shrikanth, Narayanan;

Expressive Facial Animation Synthesis by Learning Speech Coarticulation and Expression Spaces

Abstract

Synthesizing expressive facial animation is a very challenging topic within the graphics community. In this paper, we present an expressive facial animation synthesis system enabled by automated learning from facial motion capture data. Accurate 3D motions of the markers on the face of a human subject are captured while he/she recites a predesigned corpus, with specific spoken and visual expressions. We present a novel motion capture mining technique that "learns" speech coarticulation models for diphones and triphones from the recorded data. A Phoneme-Independent Expression Eigenspace (PIEES) that encloses the dynamic expression signals is constructed by motion signal processing (phoneme-based time-warping and subtraction) and Principal Component Analysis (PCA) reduction. New expressive facial animations are synthesized as follows: First, the learned coarticulation models are concatenated to synthesize neutral visual speech according to novel speech input, then a texture-synthesis-based approach is used to generate a novel dynamic expression signal from the PIEES model, and finally the synthesized expression signal is blended with the synthesized neutral visual speech to create the final expressive facial animation. Our experiments demonstrate that the system can effectively synthesize realistic expressive facial animation.

Keywords

Facial Expression, Imaging, Three-Dimensional, Speech Production Measurement, Artificial Intelligence, Face, Image Interpretation, Computer-Assisted, Humans, Speech, Models, Biological

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!