Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control
Article . 2011 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Image reconstruction in intravascular photoacoustic imaging

Authors: Yae-lin, Sheu; Cheng-Ying, Chou; Bao-Yu, Hsieh; Pai-Chi, Li;

Image reconstruction in intravascular photoacoustic imaging

Abstract

Intravascular photoacoustic (IVPA) imaging is a technique for visualizing atherosclerotic plaques with differential composition. Unlike conventional photoacoustic tomography scanning, where the scanning device rotates around the subject, the scanning aperture in IVPA imaging is enclosed within the imaged object. The display of the intravascular structure is typically obtained by converting detected photoacoustic waves into Cartesian coordinates, which can produce images with severe artifacts. Because the acquired data are highly limited, there does not exist a stable reconstruction algorithm for such imaging geometry. The purpose of this work was to apply image reconstruction concepts to explore the feasibility and efficacy of image reconstruction algorithms in IVPA imaging using traditional analytical formulas, such as a filtered back-projection (FBP) and the lambda-tomography method. Although the closed-form formulas are not exact for the IVPA system, a general picture of and interface information about objects are provided. To improve the quality of the reconstructed image, the iterative expectation maximization and penalized least-squares methods were adopted to minimize the difference between the measured signals and those generated by a reconstructed image. In this work, we considered both the ideal point detector and the acoustic transducers with finite- size aperture. The transducer effects including the spatial response of aperture and acoustoelectrical impulse responses were incorporated in the system matrix to reduce the aroused distortion in the IVPA reconstruction. Computer simulations and experiments were carried out to validate the methods. The applicability and the limitation of the reconstruction method were also discussed.

Related Organizations
Keywords

Phantoms, Imaging, Transducers, Reproducibility of Results, Signal Processing, Computer-Assisted, Models, Biological, Photoacoustic Techniques, Image Processing, Computer-Assisted, Humans, Computer Simulation, Least-Squares Analysis, Artifacts, Algorithms, Ultrasonography, Interventional, Hair

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!