Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control
Article . 2006 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

Phase-coupled two-dimensional speckle tracking algorithm

Authors: Emad S, Ebbini;

Phase-coupled two-dimensional speckle tracking algorithm

Abstract

A new two-dimensional (2-D) speckle tracking method for displacement estimation based on the gradients of the magnitude and phase of 2-D complex correlation in a search region is presented. The novelty of this approach is that it couples the phase and magnitude gradients near the correlation peak to determine its coordinates with sub-sample accuracy in both axial and lateral directions. This is achieved with a minimum level of lateral interpolation determined from the angles between the magnitude and phase gradient vectors on the sampled (laterally interpolated) 2-D cross-correlation grid. The key result behind this algorithm is that the magnitude gradient vectors' final approach to the true peak is orthogonal to the zero-phase contour. This leads to a 2-D robust projection on the zero-phase contour that results in subsample accuracy at interpolation levels well below those needed using previously proposed methods. A full description of the 2-D, phase-coupled approach is given, including two implementations based on a geometric projection and constrained optimization. In addition, a robust fast search algorithm that allows the localization of the true peak without the need for exhaustive search is given. Experimental validation on three data sets from speckle-generating phantoms undergoing uniform diagonal motion, uniform axial deformation, and nonuniform lateral flow is given. It is shown that estimated 2-D displacement fields obtained using the phase-coupled technique display a full range of values covering the dynamic range without evidence of quantization. In comparison, a previously published method using 1-D phase-projection after lateral interpolation produces severely quantized lateral displacement fields (at the same levels of interpolation as the 2-D, phase-coupled method).

Related Organizations
Keywords

Movement, Image Interpretation, Computer-Assisted, Information Storage and Retrieval, Reproducibility of Results, Image Enhancement, Sensitivity and Specificity, Algorithms, Pattern Recognition, Automated, Ultrasonography

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!