Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Signal Processing
Article . 2018 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2017
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Restoration by Compression

Authors: Yehuda Dar; Michael Elad; Alfred M. Bruckstein;
Abstract

In this paper we study the topic of signal restoration using complexity regularization, quantifying the compression bit-cost of the signal estimate. While complexity-regularized restoration is an established concept, solid practical methods were suggested only for the Gaussian denoising task, leaving more complicated restoration problems without a generally constructive approach. Here we present practical methods for complexity-regularized restoration of signals, accommodating degradations caused by a known linear operator of an arbitrary form. Our iterative procedure, obtained using the alternating direction method of multipliers (ADMM) approach, addresses the restoration task as a sequence of simpler problems involving L2-regularized estimations and rate-distortion optimizations (considering the squared-error criterion). Further, we replace the rate-distortion optimizations with an arbitrary standardized compression technique and thereby restore the signal by leveraging underlying models designed for compression. Additionally, we propose a shift-invariant complexity regularizer, measuring the bit-cost of all the shifted forms of the estimate, extending our method to use averaging of decompressed outputs gathered from compression of shifted signals. On the theoretical side, we present an analysis of complexity-regularized restoration of a cyclo-stationary Gaussian signal from deterioration by a linear shift-invariant operator and an additive white Gaussian noise. The theory shows that optimal complexity-regularized restoration relies on an elementary restoration filter and compression spreading reconstruction quality unevenly based on the energy distribution of the degradation filter. Nicely, these ideas are realized also in the proposed practical methods. The presented experiments show good results for image deblurring and inpainting using the JPEG2000 and HEVC compression standards.

Keywords

FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green
bronze