
We study deterministic mean-location parameter estimation when only quantized versions of the original observations are available, due to bandwidth constraints. When the dynamic range of the parameter is small or comparable with the noise variance, we introduce a class of maximum-likelihood estimators that require transmitting just one bit per sensor to achieve an estimation variance close to that of the (clairvoyant) sample mean estimator. When the dynamic range is comparable or larger than the noise standard deviation, we show that an optimum quantization step exists to achieve the best possible variance for a given bandwidth constraint. We will also establish that in certain cases the sample mean estimator formed by quantized observations is preferable for complexity reasons. We finally touch upon algorithm implementation issues and guarantee that all the numerical maximizations required by the proposed estimators are concave.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 391 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
