Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/tsipn....
Article . 2025 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Online Graph Topology Learning via Time-Vertex Adaptive Filters: From Theory to Cardiac Fibrillation

Authors: Alexander Jenkins; Thiernithi Variddhisai; Ahmed El-Medany; Fu Siong Ng; Danilo Mandic;

Online Graph Topology Learning via Time-Vertex Adaptive Filters: From Theory to Cardiac Fibrillation

Abstract

Graph Signal Processing (GSP) provides a powerful framework for analysing complex, interconnected systems by modelling data as signals on graphs. While recent advances have enabled graph topology learning from observed signals, existing methods often struggle with time-varying systems and real-time applications. To address this gap, we introduce AdaCGP, a sparsity-aware adaptive algorithm for dynamic graph topology estimation from multivariate time series. AdaCGP estimates the Graph Shift Operator (GSO) through recursive update formulae designed to address sparsity, shift-invariance, and bias. Through comprehensive simulations, we demonstrate that AdaCGP consistently outperforms multiple baselines across diverse graph topologies, achieving improvements exceeding 83% in GSO estimation compared to state-of-the-art methods while maintaining favourable computational scaling properties. Our variable splitting approach enables reliable identification of causal connections with near-zero false alarm rates and minimal missed edges. Applied to cardiac fibrillation recordings, AdaCGP tracks dynamic changes in propagation patterns more effectively than established methods like Granger causality, capturing temporal variations in graph topology that static approaches miss. The algorithm successfully identifies stability characteristics in conduction patterns that may maintain arrhythmias, demonstrating potential for clinical applications in diagnosis and treatment of complex biomedical systems.

Keywords

Machine Learning, Signal Processing (eess.SP), FOS: Computer and information sciences, Signal Processing, FOS: Electrical engineering, electronic engineering, information engineering, Machine Learning (stat.ML), Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green