
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Graph Signal Processing (GSP) provides a powerful framework for analysing complex, interconnected systems by modelling data as signals on graphs. While recent advances have enabled graph topology learning from observed signals, existing methods often struggle with time-varying systems and real-time applications. To address this gap, we introduce AdaCGP, a sparsity-aware adaptive algorithm for dynamic graph topology estimation from multivariate time series. AdaCGP estimates the Graph Shift Operator (GSO) through recursive update formulae designed to address sparsity, shift-invariance, and bias. Through comprehensive simulations, we demonstrate that AdaCGP consistently outperforms multiple baselines across diverse graph topologies, achieving improvements exceeding 83% in GSO estimation compared to state-of-the-art methods while maintaining favourable computational scaling properties. Our variable splitting approach enables reliable identification of causal connections with near-zero false alarm rates and minimal missed edges. Applied to cardiac fibrillation recordings, AdaCGP tracks dynamic changes in propagation patterns more effectively than established methods like Granger causality, capturing temporal variations in graph topology that static approaches miss. The algorithm successfully identifies stability characteristics in conduction patterns that may maintain arrhythmias, demonstrating potential for clinical applications in diagnosis and treatment of complex biomedical systems.
Machine Learning, Signal Processing (eess.SP), FOS: Computer and information sciences, Signal Processing, FOS: Electrical engineering, electronic engineering, information engineering, Machine Learning (stat.ML), Machine Learning (cs.LG)
Machine Learning, Signal Processing (eess.SP), FOS: Computer and information sciences, Signal Processing, FOS: Electrical engineering, electronic engineering, information engineering, Machine Learning (stat.ML), Machine Learning (cs.LG)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).  | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.  | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).  | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.  | Average | 
