Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2019
License: CC BY
Data sources: ZENODO
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Software Engineering
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deep Learning Based Code Smell Detection

Authors: Hui Liu; Jiahao Jin; Zhifeng Xu; Yifan Bu; Yanzhen Zou; Lu Zhang;

Deep Learning Based Code Smell Detection

Abstract

Code smells are structures in the source code that suggest the possibility of refactorings. Consequently, developers may identify refactoring opportunities by detecting code smells. However, manual identification of code smells is challenging and tedious. To this end, a number of approaches have been proposed to identify code smells automatically or semi-automatically. Most of such approaches rely on manually designed heuristics to map manually selected source code metrics into predictions. However, it is challenging to manually select the best features. It is also difficult to manually construct the optimal heuristics. To this end, in this paper we propose a deep learning based novel approach to detecting code smells. The key insight is that deep neural networks and advanced deep learning techniques could automatically select features of source code for code smell detection, and could automatically build the complex mapping between such features and predictions. A big challenge for deep learning based smell detection is that deep learning often requires a large number of labeled training data (to tune a large number of parameters within the employed deep neural network) whereas existing datasets for code smell detection are rather small. To this end, we propose an automatic approach to generating labeled training data for the neural network based classifier, which does not require any human intervention. As an initial try, we apply the proposed approach to four common and well-known code smells, i.e., feature envy, long method, large class, and misplaced class. Evaluation results on open-source applications suggest that the proposed approach significantly improves the state-of-the-art.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    58
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 15
    download downloads 5
  • 15
    views
    5
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
58
Top 1%
Top 10%
Top 1%
15
5
Green