
handle: 2262/90016
Partially observable semi-Markov decision processes (POSMDPs) provide a rich framework for planning under both state transition uncertainty and observation uncertainty. In this paper, we widen the literature on POSMDP by studying discrete-state, discrete-action yet continuous-observation POSMDPs. We prove that the resultant α-vector set is continuous and therefore propose a point-based value iteration algorithm. This paper also bridges the gap between POSMDP and machine maintenance by incorporating various types of maintenance actions, such as actions changing machine state, actions changing degradation rate, and the temporally extended action "do nothing''. Both finite and infinite planning horizons are reviewed, and the solution methodology for each type of planning horizon is given. We illustrate the maintenance decision process via a real industrial problem and demonstrate that the developed framework can be readily applied to solve relevant maintenance problems.
Multi-state systems, Imperfect maintenance, QA273, Condition-based maintenace, Degenerate distribution, 650, Point-based value iteration, Probabilities. Mathematical statistics, 004
Multi-state systems, Imperfect maintenance, QA273, Condition-based maintenace, Degenerate distribution, 650, Point-based value iteration, Probabilities. Mathematical statistics, 004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
