Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2012
Data sources: CNR ExploRA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Parallel and Distributed Systems
Article . 2012 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2012
Data sources: IRIS Cnr
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Load Balancing Hashing in Geographic Hash Tables

Authors: Renda Elena; Resta Giovanni; Santi Paolo;

Load Balancing Hashing in Geographic Hash Tables

Abstract

In this paper, we address the problem of balancing the network traffic load when the data generated in a wireless sensor network is stored on the sensor node themselves, and accessed through querying a geographic hash table. Existing approaches allow balancing network load by changing the georouting protocol used to forward queries in the geographic hash table. However, this comes at the expense of considerably complicating the routing process, which no longer occurs along (near) straight-line trajectories, but requires computing complex geometric transformations. In this paper, we demonstrate that it is possible to balance network traffic load in a geographic hash table without changing the underlying georouting protocol. Instead of changing the (near) straight-line georouting protocol used to send a query from the node issuing the query (the source) to the node managing the queried key (the destination), we propose to "reverse engineer" the hash function used to store data in the network, implementing a sort of "load-aware" assignment of key ranges to wireless sensor nodes. This innovative methodology is instantiated into two specific approaches: an analytical one, in which the destination density function yielding quasiperfect load balancing is analytically characterized under uniformity assumptions for what concerns location of nodes and query sources; and an iterative, heuristic approach that can be used whenever these uniformity assumptions are not fulfilled. In order to prove practicality of our load balancing methodology, we have performed extensive simulations resembling realistic wireless sensor network deployments showing the effectiveness of the two proposed approaches in considerably improving load balancing and extending network lifetime. Simulation results also show that our proposed technique achieves better load balancing than an existing approach based on modifying georouting.

Country
Italy
Keywords

Wireless Networks, Algorithmics, Wireless Sensor Networks

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?