
pmid: 32976093
The dependency between global and local information can provide important contextual cues for semantic segmentation. Existing attention methods capture this dependency by calculating the pixel wise correlation between the learnt feature maps, which is of high space and time complexity. In this article, a new attention module, covariance attention, is presented, and which is interesting in the following aspects: 1) covariance matrix is used as a new attention module to model the global and local dependency for the feature maps and the local-global dependency is formulated as a simple matrix projection process; 2) since covariance matrix can encode the joint distribution information for the heterogeneous yet complementary statistics, the hand-engineered features are combined with the learnt features effectively using covariance matrix to boost the segmentation performance; 3) a covariance attention mechanism based semantic segmentation framework, CANet, is proposed and very competitive performance has been obtained. Comparisons with the state-of-the-art methods reveal the superiority of the proposed method.
Image Processing, Computer-Assisted, Algorithms, Semantics
Image Processing, Computer-Assisted, Algorithms, Semantics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
