Views provided by UsageCounts
pmid: 30869609
We propose a new learning rule for sparse multinomial logistic regression (SMLR). The new rule is the generalization of the one proposed in the pioneering work by Krishnapuram et al. In our proposed method, the parameters of SMLR are iteratively estimated from log-posterior by using some approximations. The proposed update rule provides a faster convergence compared to the state-of the-art methods used for SMLR parameter estimation. The estimated parameters are tested on the pixel-based classification of hyperspectral images. The experimental results on real hyperspectral images show that the classification accuracy of proposed method is also better than those of the state-of-the-art methods.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 25 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 7 |

Views provided by UsageCounts