
pmid: 28113655
Most existing bottom-up algorithms measure the foreground saliency of a pixel or region based on its contrast within a local context or the entire image, whereas a few methods focus on segmenting out background regions and thereby salient objects. Instead of only considering the contrast between salient objects and their surrounding regions, we consider both foreground and background cues in this work. We rank the similarity of image elements with foreground or background cues via graph-based manifold ranking. The saliency of image elements is defined based on their relevances to the given seeds or queries. We represent an image as a multi-scale graph with fine superpixels and coarse regions as nodes. These nodes are ranked based on the similarity to background and foreground queries using affinity matrices. Saliency detection is carried out in a cascade scheme to extract background regions and foreground salient objects efficiently. Experimental results demonstrate the proposed method performs well against the state-of-the-art methods in terms of accuracy and speed. We also propose a new benchmark dataset containing 5,168 images for large-scale performance evaluation of saliency detection methods.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 91 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
