
pmid: 20975118
We present a computational approach to high-order matching of data sets in IR(d). Those are matchings based on data affinity measures that score the matching of more than two pairs of points at a time. High-order affinities are represented by tensors and the matching is then given by a rank-one approximation of the affinity tensor and a corresponding discretization. Our approach is rigorously justified by extending Zass and Shashua's hypergraph matching to high-order spectral matching. This paves the way for a computationally efficient dual-marginalization spectral matching scheme. We also show that, based on the spectral properties of random matrices, affinity tensors can be randomly sparsified while retaining the matching accuracy. Our contributions are experimentally validated by applying them to synthetic as well as real data sets.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 90 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
