Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Pattern Analysis and Machine Intelligence
Article . 2010 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://doi.org/10.1109/cvpr.2...
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Linear Sequence-to-Sequence Alignment

Authors: Flávio L C, Pádua; Rodrigo L, Carceroni; Geraldo A M R, Santos; Kiriakos N, Kutulakos;

Linear Sequence-to-Sequence Alignment

Abstract

In this paper, we consider the problem of estimating the spatiotemporal alignment between N unsynchronized video sequences of the same dynamic 3D scene, captured from distinct viewpoints. Unlike most existing methods, which work for N = 2 and rely on a computationally intensive search in the space of temporal alignments, we present a novel approach that reduces the problem for general N to the robust estimation of a single line in IR(N). This line captures all temporal relations between the sequences and can be computed without any prior knowledge of these relations. Considering that the spatial alignment is captured by the parameters of fundamental matrices, an iterative algorithm is used to refine simultaneously the parameters representing the temporal and spatial relations between the sequences. Experimental results with real-world and synthetic sequences show that our method can accurately align the videos even when they have large misalignments (e.g., hundreds of frames), when the problem is seemingly ambiguous (e.g., scenes with roughly periodic motion), and when accurate manual alignment is difficult (e.g., due to slow-moving objects).

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    90
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
90
Top 10%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!