<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 18369250
Recently, manifold learning has been widely exploited in pattern recognition, data analysis, and machine learning. This paper presents a novel framework, called Riemannian manifold learning (RML), based on the assumption that the input high-dimensional data lie on an intrinsically low-dimensional Riemannian manifold. The main idea is to formulate the dimensionality reduction problem as a classical problem in Riemannian geometry, i.e., how to construct coordinate charts for a given Riemannian manifold? We implement the Riemannian normal coordinate chart, which has been the most widely used in Riemannian geometry, for a set of unorganized data points. First, two input parameters (the neighborhood size k and the intrinsic dimension d) are estimated based on an efficient simplicial reconstruction of the underlying manifold. Then, the normal coordinates are computed to map the input high-dimensional data into a low-dimensional space. Experiments on synthetic data as well as real world images demonstrate that our algorithm can learn intrinsic geometric structures of the data, preserve radial geodesic distances, and yield regular embeddings.
Imaging, Three-Dimensional, Artificial Intelligence, Image Interpretation, Computer-Assisted, Information Storage and Retrieval, Reproducibility of Results, Image Enhancement, Sensitivity and Specificity, Algorithms, Pattern Recognition, Automated
Imaging, Three-Dimensional, Artificial Intelligence, Image Interpretation, Computer-Assisted, Information Storage and Retrieval, Reproducibility of Results, Image Enhancement, Sensitivity and Specificity, Algorithms, Pattern Recognition, Automated
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 336 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |