Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Nuclear Science
Article . 2004 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

Impact of System Design Parameters on Image Figures of Merit for a Mouse PET Scanner

Authors: K. Lee; P.E. Kinahan; R.S. Miyaoka; J.-S. Kim; T.K. Lewellen;

Impact of System Design Parameters on Image Figures of Merit for a Mouse PET Scanner

Abstract

In this study, an analytical simulation model was developed to investigate how system design parameters affect image figures of merit and task performance for small animal positron emission tomography (PET) scanners designed to image mice. For a very high resolution imaging system, important physical effects that may impact image quality are positron range, annihilation photon acollinearity, detector point-spread function (PSF) and coincident photon count levels (i.e., statistical noise). Modeling of these effects was included in an analytical simulation that generated multiple realizations of sinograms with varying levels of each effect. To evaluate image quality with respect to quantitation and detection task performance, four different figures of merit were measured: 1) root mean square error (RMSE); 2) a region of interest SNR (SNR/sub ROI/); 3) nonprewhitening matched filter SNR (SNR/sub NPW/); and 4) recovery coefficient. The results indicate that for very high resolution imaging systems, the increase in positron range of C-11 compared to F-18 radiolabeling causes a significant reduction of quantitation (SNR/sub ROI/) and detection (SNR/sub NPW/) accuracy for small regions. In addition, changing the shape of the detector PSF, which depends on crystal thickness, causes significant variations in quantitation and detection performance. However, while increasing noise levels significantly increase RMSE and decrease detectability (SNR/sub NPW/), the quantitation task performance (SNR/sub ROI/), is less sensitive to noise levels. These results imply that resolution is more important than sensitivity for quantitation task performance, while sensitivity is a more significant issue for detection. The analytical simulation model can be used for estimating task performance of small animal PET systems more rapidly than existing full Monte Carlo methods, although Monte Carlo methods are needed to estimate system parameters.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Average
Top 10%
Top 10%
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!